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ABSTRACT

A nybrid method has been developed to iteratively couple S, and Monte Carlo regions
of the same problem. This technique avolds many of the restrictions and limitatlons
cf previous attempts to do the coupling and results {n a general and relatively
efficlient method. We demonstrate the method with some simple examples.



I. INTRODUCTION

The S, /Mont2 Zarlo hybrid method ~onslists of defining spatial regions of a
problem as regions where either a Monte Carlo calculation or an S, zalzulation is %>
be done. The calculatlions are then connected through the common boundary fluxes,
Jperationally, this connectlon or linkage ls accomplished through the use of
response matrices in the Monte Carlo regions, These response matrices give the
angular flux of particles leaving the Monte Carlo regions due to the angular flux of
particles entering the Monte Carlo regions. The response matrices are calculated
using Monte Carlo and are stored to be used in a boundary flux lteration. The
boundary sources {nto the Monte Carlo regions are computed in the S, regions and,
thus, are accurate only when the solution on the boundary out of the Monte Carlo
regions is know., The boundary fluxes must, therefore, be lterated between the Monte
Carlo and SN reglons.

To> faclilitate the linkage between the S, and Monte Carlo parts of the calcula-
tion, all interface fluxes are defined on the S, numerical grid. Therefore, the
response operator for the {'th Monte Carlo region i3 a K, xK, matrix, where K, i3 the
number (spatial times angular) of SN states used to repraseﬁt the boundary rHux for
the region.

At each {teration step the exiting fluxes, due to the current estimate of the
incident fluxes, are to be determined. Precalculated rssponse matrices are used
only in the Monte Carle regions, 1In the S, regions, the exiting fluxes are deter-
mined by numerically solving the transport equatinn.

Precalculated response matrices are not used in the S, regions since they would
increase both storage and computational requirements. Compucing a K«K response
matrix is K times more costly than a single boundary value problem. Since typical
values of K are much larger than the required number of interfaca flux iterations,
precalculating response matrices for the SN regions 1s not advisable.

The situation 13 quite different for the Monte Carlo reglons. By recording the
initial (S,) state in addition to the final (S,) state of each particle history, a
single Monte Carlo zalculation can generate an entire response matrix instead of
Just an exit flux. As explained in Ref. !, such a calculation requires roughly the
same computatlion time as a single boundary value problem of comparabls accuracy.
(The accuracy of concern here is not that of the individual roesponse matrix ele-
tnents, which will be relatively poor, tut rather that of the exit fluxes calculated
directly and via the response matrix.)

The hybrid method has basen implemented in a computer code called TWODANT/MC.
This was done by adding Monte Carlo and response matrix lirkage modulas to TWODANT.'’
Although the technlique should be applicable to arbltrary geometries, the preaent
test version of TWODANT/MC {s restricted to media consisting of three rectangular
reglions (see Fig. [). The top and bottom regions (which need not be homogeneous)
are analyzed using 5,, while the center region, including the boundary larer zones,
183 treated with the Monte Carlo method. The {nterface fluxes a* the top and hotton
of the boundary layers are determined (terativaly using the response mat:,ix method,

Several tesat problemsa have been run wlith excellent results. The prinaipal

limitation >f the method appears to be the computer memory avallabla for storing the
Monte Carlo regponse matricona,
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Fig. . Geometry for the Testing ot the Sn-Monte Carlo Link.

II. THEORY

Zonsider the medium depicted in Fig. I, consisting of one Monte Carlo and two S
reglons. Suppose there are IL S, spatlal mesh cells along each 5, /Monte Carlo
interface. Then, the interface fluxes will be K-dinensional vectors where

M
K=1IL « 35 , (M

and

M = the total number of angular directlions In a
two-dimensional S, calculation. (2)

Let the’gb%;es at*?RQ top interface be denoted by $?Ut and ;}n and those at the
bottom as ¥, and y, where the superscripts refer to directions in or out of the
Monte Carlo region. The transmission matrices T, and T, and the reflection matrices
R, and R, for the Monte Carlo reglon are deflned such that

s0out *in »{n rout ‘

Yy Ry = Tavy oy ‘3)
4and

{ - -+

;§Ut . pr:n . T’w}n . j?ut ' '4)



where §?Ut and §QUt are the flux of particles g?gt ng&d leave the top and bo.-tom
surfaces of the Mont2 Carlo region under vacuum (y, = y, = 0) boundary conditions.
These fluxes result from sourzes located inside the Monte Carlo region.

Equations '3 and (4) can be solved iteratively:

+out (P+1) *in(P) +in(P) out

*out (P+1) +in(P) +1in(P) out

V2 RPLP * Ty < 8 (6)
The matrices T,, T,, R,, and R, and fluxes §?Ut and §SUt are calculated once using

- [

Monte Carlo and ther saved for future use. The fluxes w}n( ) and ;}n(P) are calgu-
lated at each iteration step using SN with the prescribed boundary fluxes ;?Ut(P)
__ ., +out(P)
Gnd w: .

A. Checosing the SN and Monte Carlo Reglons

Three criteria are important when deciding where to locate the SN/Monte Carlo
interfaces:

1. The S, regions shouid be comprised of geometrically simple and relatively
highly scattering materlals so that the SN/DSA solver will be fasat and
accurate.

2. The Monte Carlo region shouid be as optically thin as possible so that the
Monte Carlo calculations are reasonably fast. It may also contain localized
sources in phase space or geometrically complex objects.

3. 1lne Monte Carlo/S, interfaces should be located where the flux i3 a slowly
varying functlon of angle and position. This ls needed to minimize the
number of S, states needed to represent the interface fluxeys, thereby minfi-
mizing the §1ze of the response matrices.

B. The Boundary Layers

If it were not for Item 3, above, the ideal loocations for the S, /Monte Carlo
interfaces would be at the physical boundaries between high- and lou-scattering
regions, However, this could lead to very large resporse matrices since the flux
near a low-scattering region can be quite anisotroplc. For thls reasnn, we have
found it advisable to locate the S,/Monte Carlo interfaces in highly scattering
regions about 1 mfp away from a resioﬁ‘or low scattering. Thus, for best results,
the Monte Carlo region should be comprised of a zone of low-scattaering material
sandwiched between buundary layers (about 1-mfp thick) with large scattering cross
gections,

One obvious drawback in using the boundary layers i8 that they increase the
optical thickness of the Monte Carlo region and, therefore, increase the average
number of collisiona per history. lowever, it 18 our oplnion that the reduction In



the amount of storage needed for the response matrices more than compensates for tne
increase in Monte Carlo computation time.

C. Implementation into TWODANT

The implementation of this method into the TWODANT code involves providing the
logic for the interface flux iteration as characterized by Eqs. (5) and (6), while
including subroutines to perform the Monte Carlo computation and to compute thne
response matrices on the S, spatial and angular mesh. From the S, point of view,
the only difference between the hybrid method and the normal problem-solving process
1s the inclusion of interior boundary sources. That {s, the procedure we use i3 to
set up the entire problem as an S, problem with the addition of interior boundary
conditions. In this way, the logic for the solution of the transport flux remains
the same (and, hence, the coding doesn't change), and the DSa accelerator? is also
unchanged. We, thus, retain the power and computational efficiency of the S, solver
while we provide a linking with the Monte Carlo region. This i{s an 1mporta&% point
and greatly enhances the practicality of this hybrid method.

To illustrate the implementation of the interior boundary conditions, we refer
to Fig. II, which depicts a typical S, spatial mesh. We indicate a direction Qi ,
which defines a sweeping direction (down and in, in the case showa). The sweepling
starts at the top and right boundar:es and continues until Surracesoatand 4 are
encountered; the S, values for these surfaces are then replaced by the v glven by
the Monte Carlo calculatlon, and the normal sweeping resumes. A similarmprocedure

Q
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Fig. II. Typlcal Sn Mesh with Interlor Boundaries tor MC Coupling.



{s followed for the other three directions. This logic¢ is readily implemantad, and
vectorization of the sweeping algorithm is retained. Thus, the speed of the normal
S, computation is retained. In the same way, the diffusion acceleration equatiocns
retaln their normal structure; the only difference is the inclusion of the interior
boundary sources.

D. Accelerating the Interface Flux Iterations

Although DSA zccelerates the S, calculations, it is not appllcable to Eqs. (5)
and (6). To reduce the number of %nterrace flux iterations, we use an extrapolation
procedure,* which we refer to as the method of residual expansion funetions. To
describe this technique, it will be helpful to express the interface flux lterations
by a single equation. Formally, we can express the SN calculations as

&:n(P) . RfN $$ut(P) ' (N
and

+1n(P) SN =+out(P)

¥ Ry ¥ ' (8)

although the reflection matrices R?N

and RfN for the top and bottom SN reglons are
not actvally determined.

Using Eqs. (7) and (8), Eqs. (5) and (6) can be expressed by the single equation

;owt(P+1) . B$OUt(P) . §out ' (9)
where
SN SN
W& ToRy
B = , (10)
SN SN
TRy RyR,
Ut . : (1)
»out
-WZ -
-goutw
1
gout | . (12)
out
-§2 -

and P i{s the {teration index. The residual,

;(P) . 30ut(P*1) - ;out(P) . (13)



It follows from Egqs. (9) and (13) that

q
’ +( D
2(P+1) | Br(‘) . BP;(l) . :E : ai*:;- . (14)
i
i=1
where
xi = the eigenvalue of B with the L'th largest magnitude,
;1 = the elgenvector corresponding to Ai'
q- thePnumber of values of i for which aLA: 13 not negligible compared to
a1A , and
1
a = the 1'th coefficlent in the expansion of F(1) in terms of the ;1.

Here we are assuming for simplicity that B has a complete set of eigenvectors. We
Refer to the condition defined by approximation (14) as q'th order shape convergence
at iteration p.

It can be shown that

q
¢out . $out(P+q+1) - 2 : ai;(P+1+1) i (15)
{=1

where

g, = —— (16)

end the 81 are obtalned from a least squares fit to the equation
. q
2pearr) z : 8, p(P+L) (17)
f=1

Exact equality holds {n Eqs. (15) and (17) whenever exact equality holds (n
Eq. (14),

To predict the converged solution via Eq. (15) requires a total of

E-p+q¢| (18)



lterations. For any realistic problem, the relationship between p and q {5 not
known apriori. Therefore, to implement the method, we fix a value for P (typizal
cholces are from 5 to 8) and then test different values of q in Eq. (17), beginning
with q = 1, The accuracy of the fit should improve until the correct value of g is
exceeded, at whizh time the residuals on the right-hand side of Eq. (17) become
linearly dependent and the least squares problem becomes singular. Typical values
of q range from 1 to 5.

III. EXAMPLE CALCULATIONS

In the following, we present two example calculations on syatems designed to
test the accuracy and calculational efficlency of this method. What we seek to test
is sensitivity to the S, quadrature used and the number of boundary ilterations
required for an accurate solutlen. It is clear that the number of boundary flux
lteratlions depends upon the scattering ratio In the S, region; if ¢ = 0, then no
iteratione are required; and for ¢ = 1, we expect the number of iterations to be
maximum. Thus, referring to Fig. I, we set the scattering ratio for the S, regions
to be unity (¢ = 1). In cur test problems, we then vary the Monte Carlo region size
and the source.

For Problem 1 (referring to Fig. I), we prescribe the system as follows:

1. Ceometry (X-Y), 10 cm » 25 cm.

The Y dimension of each SN region 1s 10 cm, and the Y dimension of the Monte
Carlo region is 5 cm,

2. Material (homogeneous).
The total cross sections in the S, regions is 1 ecm™ and is 0.1 em~' in the
Monte Carlo region; o w 0.1 {n the Monte Carlo region.

3. The source 1s an lsotropic point source normalized to one particle at posi-
tion \X = 1.0, Y = 12.5), which 13 in the middle of the Monte Carlo region
near the left boundary.

4, Spatial Mesh, 20 x 50 uniform spacing.

The Monte Carlo calculation starts 200,000 particles from the source and about
200,000 from the region boundaries to comnute the source contribution to the bound-
ary flux and the response matrices, respectively. In the S ,6 calculation, we varied
the S, order from N = 2 to N = 8. For the results, we present the leakage current
from each spatial cell at the right-hand boundary of the system. In order to judge
the accuracy of the results, we also performed benchmarking calculations using MCNP®
to obtalin the Monte Carlo solution for the whole problem and also S-50 for an SN
benchmark,

In Fig. III we present the results of three calculations; the benchmark MCNP,
the benchmark S-50, and the hybrid S,/MC. We see quite good agreement in all three
calculations for the leakage current; the greatest discrepancy occurring in the
"slot" or Monte Carlo region. 1In Flg. IV we expand this region and note that tha
MCNP and hybrld calculations agree very well while the S~50 {s flatter across the
slot. This flatness arises because we must represent a point source by a volume
source in a mash cell; thus, the discrepancy 19 caused by the finite extent of the
source. We also note that the solution should be symmetric about Y = 12,5, but the



0012
0.012
’ [
0.011
_ o010 S <
] - ? )
% 0,008 § 0.010
g = [S5qPt
0.004 0.008
0.002 0.007
' I 0.008
o.oooo 5 10 15 20 25 10 " 12 3 14 18
Y (cm) rrentv g the Siot of E
Fig. ITI. Leakage Current from Exampie Problem 1. Fig. IV. Leakage C'l' at xample

MCNP and hybrid calculations are a bit skewed, which we assume is statistical error.

All-in-all, the agreement 18 quite good with a maximum deviation of ~3%. To con-
trast with this, in Fig. V, we present calculations varying the S, order without the
Monte Carlo hybrid and see that the errors in the slot are substantial even up to
5-30. Next, in Fig. VI, we show the leakage current from a series of SN/Monte Carlo
hybrid calculations where we have varied the S, order from S-2 to S-8. It is seen
that the results are not very sensitive to § order in this probiem. Finally, we
present results that show the convergence of the solution in the slot area as a

0.015 0.012

1 1
. 0.012 S1e 0.010
a
. 0.008
0.009
g £ 0.008
g 0.008
0.004
0.003 0.002
Om T T -O.M — ‘! oy
0 5 10 15 20 28 0 s 10 15 20 25
Y (em) Y (cm)
Fig. V. Leakage Current from Exampie Problem 1 Fig. VL Leskage Current from Example Probiem 1
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furction of boundary flux iteration [Egs. {!) and (2)J in Fig. VII. We rcte tra:,
in obtaining these results, we have used the projection method described Iin Sac-
tion II.D. For this exampls, it is seen that the answer is converged by iteration 2
(P = 2), which 1s good news indeed, To ascertain the effect of our projecting the
solution at tne end of the lteration cycle, we present iteration resuits in
Fig. VIII in which the solution is not projected. In this case, we require five
iterations to converge, which 1s a factor of 2.5 greater.

For our next example, we provide a more stringent test of the method because of
a very tight coupllng between the reglons. We prescribe this system as follous
(again, refer to Fig. I):

1. Geometry (X-Y), 20 cm = 21 cm.

The Y dimension of each SN region is 10 cm and the Y dimension of the Monte
Carlo region ls 1 cm.

2. Material (homogeneous).
Same as example in Problem 1,

3. Source.
Isotropic boundary source, normalized to one particle located at (X =

0.0,10.0 = Y = 11,0), that is, located at the left-hand boundary of the MC
region.

4, Spatial mesh.
20 x 42 uniform spacing.

Again, the Monte Carlo calculation starts 200,000 particles. Thus, in this
problem, we have a long, narrow slot surrounded by perfect scattering regions. To
obtain benchmark solutions, we performed an MCNP calculation and an S-100 calcula-
tion of the system. In Fig. IX we present the MCNP calculation, an $-100 calcula-
tion, and the hybrid S-4/Monte Carlo calculation of the leakage current. Agaln, as
in the first example, we see very good agreement among the solutions even for this
more difficult problem, The value of the current at the slot s or particular
interest; this ls the point at 10,5 cm on the plot. To 3ee the sensitivity to a
normal S, calculation, we plot the results as a function of S, order {n Fig. X. The
sensitivity at the slot i{s quite strong, which is well known in normal S, calcula-
tions for problems of this type. to ascertain the sensitivity of the hybryd method,
we show the same results from S, to S,, in Fig. XI. There ls more senslitivity here
than in Example 1; but the results, even with S,, are quite acceptable. The maximum
difference in the slot current is 3.4% from S-12/Monte Carlo to S-U4/Monte Carlo,
while there is an enormous savings ln storage when using the very acceptable

S-4/Monte Carlo. As we did for Example 1, we watch the convergence of the solution
to Example 2 in the hybrid S,/Monte Carlo mode in the neighborhood of the slot; the
results are shown in Flg. XIl. Here, we notice that the exit currents converge more

slowly; but by five lterations (P=5), we are well converged for our purposes.
Again, to see the effect of the projection of the solution, we display in Flig. XIII
the values of the current as a function of iteration without the projection. Com-
paring Flgs. XII and XIII leads us tc conclude that the projection savea between a
factor of 2 to 3 in the number of {terations requlred and, hence, '3 very
worthwhile.
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To show the advantage of using a boundary layer region {n the Monte Carlo cal-
culation, we present the solution as a function of S, order i{n Fig. XIV. There, the
data labeled S5, ,/MCO are from a calculation without a boundary region. We note the
sensitivity of the hybrid solution to S, order when no boundary layer is used. Even

at S-12, the error at the slot is -20% compared with the benchmark and the nybrid
method with the boundary layer.
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VI. OBSERVATIONS AND CONCLUSTONS
From the results of the above examples, we make the following observations:

1. An accurate answer for relatively simple problems is obtainable by an itera-
tive linking of Monte Carlo and SN through boundary response matri as.

2. The use of a boundary layer region (s essential in obtaining results that
are relatively ilnsensitive to the SN order used for the S,q regions,.

3. The implementation of a Monte Carlo region {nto an S, code need not inter-
rupt the normal mesh-angle sweeping algorithm. Vectorization for this
algorithm {s not lnhibited, and diffusion synthetic acceleration of the
transport iterations (s as effective as {n the normal case.

4. The S, /Monte Carlo boundary iteration procedure converges well and is effac-
tively alded by the projection method described in Section II.D,

These observations lead us to conclude that the S, /Monte Carlo hybrid method is very
attractive for solving problems that neither method, by itself, can do very effi-
clently. It brings together the power c¢f both methods in a systematic and con-
venlent manner. In our Ilmplementation of this method, we have restricted (t to
compute geometrically very simple systems. However, the Monte Carlo algorithm is
readily generalized, which will remove the geometric restriction in the Monte Carlo
reglon. Of course, the S, regions still must be described by either X-Y, R-Z, or
R-8 geometries sincc we are in the TWODANT code. This code alao restricts us to the
multlgroup approximation in energy, which reduces somewhat the power of the Monte
tarlo method. However, the main concern {3 the storage required for the res, onse
matrices trat go as the square of the number of spatial mesh polints times angular
mesh polnts on the interface betwean the two regions. For example, ({f we assume we
have a maximum of 1.5 »« 10* words of memory for response matrix storagsa,



then for a general problem with an asymmetric Monte Carlo region, we ootain tne
following permissible boundary spatial mesh as a function of SN order

a) S,,IL = 512,
b) S.,IL = 204,
e) S..,IL = 102,
d) S,,IL = 61,

where IL is the number of spatial mesh intervals on the boundary. Thus, at S,, we
are beginning to reach our limit for reasonably sized, realistic problems.
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